Fast and High Capacity Digital Image Watermarking Technique Based on Phase of Zernike Moments

نویسندگان

  • Ekta Walia
  • Anu Suneja
چکیده

Zernike Moments (ZMs) are used in many image processing applications, due to their resistance against various signal processing and geometric attacks. Digital image watermarking is one of those application areas, where ZMs are widely used to insert and extract the watermark bits for digital media authentication. In all the existing ZM based watermarking techniques, magnitude of moments is used to insert and extract the watermark. In this paper, the authors’ have proposed a semi blind watermarking technique in which phase of ZMs is used for watermark insertion and extraction. Due to the use of phase of ZMs, 100% detection ratio is achieved against any geometric and other signal processing attacks. To make the proposed technique fast, q-recursive method is used to compute the Zernike polynomials. The use of qrecursive method has also increased the transparency of watermark due to its better reconstruction ability as compared to traditional moment computation method. Through detailed experimentation, it has been confirmed that the proposed watermarking technique is fast, has more imperceptibility, less Bit Error Rate (BER) and more capacity as compared to traditional ZMs magnitude based watermarking technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and High-Secured Watermarking System Using Zernike Moments

Watermarking is an effective technology that solves many problems within a digitization project. A high capacity data entrenching scheme based on precise and fast framework for the computation of Zernike moments (ZMs) is proposed in this paper. The high capacity is achieved by maximizing data entrenching size and improving the hiding ratio after dipping the inaccuracies in the computation of ZM...

متن کامل

A Normalization-based Robust Watermarking Scheme Using Zernike Moments

Digital watermarking has become an important technique for copyright protection but its robustness against attacks remains a major problem. In this paper, we propose a normalizationbased robust image watermarking scheme. In the proposed scheme, original host image is first normalized to a standard form. Zernike transform is then applied to the normalized image to calculate Zernike moments. Dith...

متن کامل

International Journal of Advance Research and Innovation

Watermarking is an effective technology that solves many problems within a digitization project. A high capacity data entrenching scheme based on precise and fast framework for the computation of Zernike moments (ZMs) is proposed in this paper. The high capacity is achieved by maximizing data entrenching size and improving the hiding ratio after dipping the inaccuracies in the computation of ZM...

متن کامل

An Effective Image Watermarking System for High Embedding Capacity

In this paper, we present a computationally fast and robust image watermarking system with high embedding capacity. The watermark signal is embedded by quantizing the magnitudes of higher order Zernike moments (ZMs). The use of fast and numerically stable method for ZMs computation is proposed to overcome the high computational complexity and numerical instability at the high order of moments. ...

متن کامل

A Feature-based Invariant Watermarking Scheme Using Zernike Moments

In this paper, a novel feature-based image watermarking scheme is proposed. Zernike moments which have invariance properties are adopted in the scheme. In the proposed scheme, feature points are first extracted from host image and several circular patches centered on these points are generated. The patches are used as carriers of watermark information because they can be regenerated to locate w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCVIP

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012